Averaging Operators on the Unit Interval

Mal Gehrk* Carol Walker Elbert Walker
New Mexico State University Las Cruces, New Mexico

Abstract
In working with negations and t-norms, it is not uncommon to call upon the arithmetic of the real numbers even though that is not part of the structure of the unit interval as a bounded lattice. In order to develop a self-contained system, we incorporate an averaging operator, which provides a (continuous) scaling of the unit interval that is not available from the lattice structure. The interest here is in the relations among averaging operators and t-norms, t-conorms, negations, and their generators.

KEYWORDS: average, bisymmetric, deMorgan system, Frank t-norm, mean system, negation, t-norm

1 Introduction
An averaging operator is a binary operation \(\hat{\oplus} \) on the unit interval that is commutative, strictly increasing in each variable, convex (continuous); idempotent; and bisymmetric. We consider mean systems \((1, +)\), where \(+\) is an averaging operator on the bounded lattice \(\mathbb{I} = (\{0, 1\}, \leq, 0, 1)\) and note that these algebras have no nontrivial automorphisms.

All averaging operators are isomorphic to the arithmetic mean via an automorphism \(\gamma\) of the unit interval (a generator for the averaging operator) that takes the given average of two elements \(x\) and \(y\) to the arithmetic mean of \(\gamma(x)\) and \(\gamma(y)\). This characterization and many other facts about averaging operators can be found in the references\(^1\). \(3, 4, 5, 6, 8, 7, 8\). The averaging operators we consider are not “weighted” averages in the usual sense, although they share some of the basic properties. These averaging operators can be thought of as “slowed” averages. They provide a (continuous) scaling of the unit interval that is not provided by the lattice structure.

We show that each averaging operator on the unit interval naturally defines a negation \(\bar{\gamma}\) by the property

\[x \hat{\oplus} \bar{\gamma}(x) = 0 \hat{\oplus} 1 \]

*Author to whom correspondence should be addressed. E-mail: mgehrke@nmsu.edu
and the averaging operator is "self-dual" with respect to this negation. We also relate
the averaging operator to the nilpotent t-norms that determine the same negation and
find a natural one-to-one correspondence between averaging operators and nilpotent t-

norms, with corresponding averaging operators and nilpotent t-norms determining the
same negation. This correspondence relates the Łukasiewicz t-norm to the arithmetic-
mean, both of which lead to the standard negation $1 - x$, for example. We consider
what happens in the general case.

Each averaging operator on the unit interval induces a binary operation on the
group of automorphisms (and also on the set of anti-automorphisms) of the unit interval.
We use these induced operations to define special maps from the set of negations to
the automorphism group of the unit interval, and from the automorphism group of
the unit interval onto the centralizer of the negation, induced by the given averaging
operator. In this new setting, we generalize theorems from an earlier paper[20] where
we proved those theorems for the arithmetic mean and its corresponding negation
$1 - x$.

In the last section we consider deMorgan systems with averaging operators and
genralize the families of Frank t-norms and nearly Frank t-norms in this setting.

2 Averaging Operators on the Unit Interval

We denote by I the bounded lattice consisting of the unit interval $[0, 1]$ with the stan-
dard partial order—that is, $I = ([0, 1], \leq, 0, 1)$. In order to develop systems $(I, \eta, +)$,
$(I, \Delta, +)$, $(I, \eta, \eta, +)$ for negations η and t-norms Δ that include the necessary arith-
metic as part of the system, we use the following definition which is a variant of those
in the references.

Definition 1 An averaging operator on I is a binary operation $+: I^2 \to I$ sati-
sfying for all $x, y \in [0, 1]$,

1. $x + y = y + x$ ($+$ is commutative).
2. $y < z$ implies $x + y < x + z$ ($+$ is strictly increasing in each variable).
3. $x + y \leq c \leq x + z$ implies there exists $w \in [y, z]$ with $x + w = c$ ($+$ is convex,
i.e. continuous).
4. $x + x = x$ ($+$ is idempotent).
5. $(x + y) + (z + w) = (x + z) + (y + w)$ ($+$ is bisymmetric).

The following properties of an averaging operator are well-known.

Proposition 2 Let $+$ be an averaging operator. Then for each $x, y \in [0, 1]$,
1. \(x \land y \leq x + y \leq x \lor y \)—that is, the average of \(x \) and \(y \) lies between \(x \) and \(y \).

2. The function \(A_x : \mathbb{I} \to [x^0 + 1, x + 1] : y \mapsto x + y \) is an isomorphism—that is, \(A_x \) is an increasing function that is both one-to-one, and onto.

Proof. If \(x \leq y \), then \(x \land y = x = x + x \leq x + y \leq y = x \lor y \). Similarly, if \(y \leq x \), \(x \land y \leq x + y \leq x \lor y \). Clearly the function \(A_x \) is strictly increasing and, in particular, one-to-one. Suppose \(x + 0 \leq c \leq x + 1 \). Then by convexity, there is a number \(w \in [0, 1] \) with \(x + w = c \). Thus \(A_x \) is onto.

The standard averaging operator is the arithmetic mean:

\[
\text{av}(x, y) = \frac{x + y}{2}.
\]

Other examples include the power means and logarithmic means:

\[
x \circ y = \left(\frac{x^n + y^n}{2} \right)^{\frac{1}{n}} = \log \left(\frac{a^n + a^n}{2} \right).
\]

Indeed, for any automorphism or anti-automorphism \(\gamma \) of \(\mathbb{I} \),

\[
x \circ y = \gamma^{-1} \left(\frac{\gamma(x) + \gamma(y)}{2} \right) = \gamma^{-1} (\text{av}(\gamma(x), \gamma(y))
\]

is an averaging operator.

The preceding example is universal—that is, given an averaging operator \(\circ \), there is an automorphism \(\gamma \) of \(\mathbb{I} \) that satisfies

\[
\gamma(x \circ y) = \frac{\gamma(x) + \gamma(y)}{2}
\]

for all \(x, y \in [0, 1] \). This automorphism can be defined inductively on the collection of elements of \([0, 1]\) that are generated by \(\circ \) from \(0 \) and \(1 \). Such elements can be written uniquely in one of the forms

\[
x = 0, \quad x = 1, \quad x = 0 \circ 1, \quad \text{or} \quad x = (\cdots (0 \circ 1 \circ a_1 \circ \cdots) \circ a_{n-1}) \circ a_n
\]

for \(a_1, \ldots, a_n \in \{0, 1\} \), \(n \geq 1 \), and \(\gamma \) is then defined inductively by

\[
\gamma(0) = 0; \quad \gamma(1) = 1; \quad \gamma(x \circ a) = \frac{\gamma(x) + a}{2}, \text{ if } \gamma(x) \text{ is defined and } a \in \{0, 1\}
\]
The function γ satisfies

$$\gamma\left(\left\{\cdots\left(0+\cdot\cdot\cdot+x_k\right)+\cdot\cdot\cdot\right\}+x_n\right) = \sum_{k=1}^{n} \frac{1}{2^{n-k+1}}x_k$$

where x_1,\ldots,x_n is any sequence of 0's and 1's. Now γ is a strictly increasing function on a dense subset of I and thus γ extends uniquely to an automorphism of I (see, for example, Accret[10], page 287). Moreover, there were no choices made in the definition of γ on the dense subset. Thus we have the following theorem.

Theorem 3 The automorphism γ defined above satisfies

$$\gamma(x+y) = \frac{\gamma(x) + \gamma(y)}{2}$$

for all $x,y \in [0,1]$. Thus every averaging operator on $[0,1]$ is isomorphic to the usual averaging operator on $[0,1]$—that is, the mean systems (I,\cdot) and (I,av) are isomorphic as algebras. Moreover, γ is the only isomorphism between (I,\cdot) and (I,av).

Corollary 4 For any averaging operator \cdot, the automorphism group of (I,\cdot) has only one element.

Proof. Suppose that f is an automorphism of (I,\cdot). Then γf is an isomorphism of (I,\cdot) with (I,av), so by the previous theorem, $\gamma f = \gamma$. Thus $f = \gamma^{-1} = \cdot$. \hfill \Box

When an averaging operator is given by the formula

$$x \cdot y = \gamma^{-1}\left(\frac{\gamma(x) + \gamma(y)}{2}\right)$$

for an automorphism γ of I, we will call γ a generator of the operator \cdot and write $\cdot = \gamma$. From the theorem above, the generator of an averaging operator is unique.

3 Averaging Operators and Automorphisms

Theorem 5 If f,g are automorphisms [anti-automorphisms] of I, and \cdot is an averaging operator on I, then $f \cdot g$ defined by $(f \cdot g)(x) = f(x) \cdot g(x)$ is again an automorphism [anti-automorphism] of I.

Proof. Suppose f and g are automorphisms of I. If $x < y$, then $f(x) < f(y)$ and $g(x) < g(y)$ imply that $f(x) \cdot g(x) < f(y) \cdot g(y)$ since \cdot is strictly increasing in each variable. Thus the map $f \cdot g$ is strictly increasing. Also, $(f \cdot g)(0) = f(0) \cdot g(0) = 0 \cdot 0 = 0$ and $(f \cdot g)(1) = f(1) \cdot g(1) = 1 \cdot 1 = 1$. It remains to show that
f maps $[0, 1]$ onto $[0, 1]$. Let $y \in [0, 1]$. Then $f(0) + g(0) = 0 \leq y \leq 1 = f(1) + g(1)$. Let

\begin{align*}
u &= \{ x \in [0, 1] : f(x) + g(x) \leq y \} \\
v &= \{ x \in [0, 1] : f(x) + g(x) \geq y \}
\end{align*}

If $u < v < v$, then $f(w) + g(w) > y$ and $f(w) + g(w) < y$, an impossibility. Thus $u = v$ and $f(u) + g(u) = y$. This completes the proof for automorphisms. Similar remarks hold in the case f and g are antiautomorphisms of \mathcal{L}.

4 Averaging Operators and Negations

In this section we show that each averaging operator naturally determines a negation, with respect to which the averaging operator is self-dual.

Theorem 6 For each averaging operator \oplus on \mathcal{L}, the equation

$$x \oplus \eta(x) = 0 + 1$$

defines a negation $\eta = \eta_\oplus$ on \mathcal{L} with fixed point $0 + 1$.

Proof. Since $x + 0 = 0 + x \leq 0 + 1 \leq x + 1$, by Proposition 2, for each $x \in [0, 1]$ there is a number $y \in [0, 1]$ such that $x + y = 0 + 1$, and since A_x is strictly increasing, there is only one such y for each x. Thus the equation defines a function $y = \eta(x)$. Clearly $\eta(0) = 1$ and $\eta(1) = 0$. Suppose $0 \leq x < y \leq 1$. We know $x + \eta(x) = y + \eta(y) = 0 + 1$. If $\eta(x) \leq \eta(y)$, then $x + \eta(x) < y + \eta(x) \leq y + \eta(y)$ which is not the case. Thus $\eta(x) > \eta(y)$ and η is a strictly decreasing function. Now $\eta((x \oplus \eta(x)) = 0 + 1$. But also, $x \oplus \eta(x) = x + \eta(x) = 0 + 1$. Thus, applying Proposition 2 to $\eta(x)$, we see that $\eta(\eta(x)) = x$. It follows that η is a negation. If x is the fixed point of η, then $x = x + x = x + \eta(x) = 0 + 1$.

The negation thus determined by an averaging operator will be referred to as the natural negation for that averaging operator. The natural negation for the arithmetic mean is $\alpha(x) = 1 - x$, for example, since $\frac{\alpha(x) + \alpha(1-x)}{2} = \frac{x + 1}{2}$ for all $x \in [0, 1]$.

Theorem 7 Every homomorphism between mean systems respects the natural negations—that is, is a homomorphism of mean systems with natural negations.

Proof. Suppose $j : (\mathcal{L}, +_1) \to (\mathcal{L}, +_2)$ is a homomorphism. Then

\begin{align*}
f(x) \oplus_2 f(\eta_{+_1}(x)) &= f(x +_1 \eta_{+_1}(x)) = f(0 +_1 1) \\
&= f(0) +_2 f(1) = 0 +_2 1
\end{align*}

Thus $f(\eta_{+_1}(x)) = \eta_{+_2}(f(x))$.

For this reason, mean systems with natural negation $(\mathcal{L}, +_1, \eta_{+_1})$ will be often be referred to simply as mean systems.
Corollary 8 If γ is the generator of \oplus, then $\eta_\gamma = \gamma^{-1} \alpha \gamma$.

Proof. From Theorem 7, we see that $\gamma \eta_\gamma = \alpha \gamma$. ■

A negation of the form $\gamma^{-1} \alpha \gamma$ is said to be generalized by γ, and will be written as $\alpha_\gamma = \gamma^{-1} \alpha \gamma$.

Example 9 For $x \oplus y = \frac{x + y}{2}$, $\eta_\gamma (x) = 1 - x$

For $x \oplus y = \left(\frac{x^2 + y^2}{2}\right)^{\frac{1}{2}}$, $\eta_\gamma (x) = (1 - x^2)^{\frac{1}{2}}$

For $x \oplus y = \log_a \left(\frac{a^x + a^y}{2}\right)$, $\eta_{\gamma_a} (x) = \log_a (1 + a - a^x)$ and $\lim_{x \to 1} \eta_{\gamma_a} (x) = 1 - x$

The following theorem shows that \oplus is self-dual with respect to its natural negation—that is,

$x \oplus y = \eta_\gamma (\eta_\gamma (y) + \eta_\gamma (x))$

Theorem 10 Let \oplus be an averaging operator on \mathbb{I}. Then η_γ is an anti-automorphism of the system (\mathbb{I}, \oplus). Moreover, it is the only anti-automorphism of (\mathbb{I}, \oplus).

Proof. Let $\eta = \eta_\gamma$. Since η is an anti-automorphism of \mathbb{I}, we need only show that $\eta (x \oplus y) = \eta (y) \oplus \eta (x)$ for all $x, y \in [0, 1]$. Now $\eta (x \oplus y)$ is the unique value satisfying the equation $(x \oplus y) + \eta (x \oplus y) = 0 + 1$. By bisymmetry,

$(x \oplus y) + (\eta (y) \oplus \eta (x)) = (x + \eta (x)) + (y + \eta (y))$

$= (0 + 1) + (0 + 1) = 0 + 1$

It follows that $\eta (x \oplus y) = \eta (y) \oplus \eta (x)$. The last statement follows from Corollary 4. ■

Let $\text{Map}(\mathbb{I})$ denote the group of all automorphisms and anti-automorphisms of \mathbb{I}. For any subset S of $\text{Map}(\mathbb{I})$ the set $Z(S) = \{ f \in \text{Map}(\mathbb{I}) : fs = sf \text{ for all } s \in S \}$ is the centralizer of S in $\text{Map}(\mathbb{I})$ and is a subgroup of $\text{Map}(\mathbb{I})$. We are concerned with cases where $S = \{ \gamma \}$ is a single anti-automorphism, and we are only interested in those f which are in $\text{Aut}(\mathbb{I})$, that is, in the centralizer of γ in $\text{Aut}(\mathbb{I})$, which is the group

$Z(\{ \gamma \}) \cap \text{Aut}(\mathbb{I}) = \{ f \in \text{Aut}(\mathbb{I}) : f\gamma = \gamma f \}$

For ease of notation, we are going to denote this group by $Z(\{ \gamma \})$ and refer to it as the centralizer of γ.

Let $\text{Neg}(\mathbb{I})$ denote the set of all (strong) negations—anti-automorphisms β of \mathbb{I} satisfying $\beta (\beta (x)) = x$ for all $x \in [0, 1]$. The following three theorems generalize Theorems 2, 22, and 23 of our paper on De Morgan systems[10], where these theorems are proved for the arithmetic mean and the corresponding negation $\alpha (x) = 1 - x$.
Theorem 11 Let $+$ be an averaging operator on \mathcal{I} and let η be the negation determined by the equation $x + \eta(x) = 0 + 1$. Then the centralizer $Z(\eta)$ of η is the set of elements of the form $\eta f x + f$ for automorphisms f of \mathcal{I}. Moreover, if $f \in Z(\eta)$, then $\eta f \eta + f = f$.

Proof. To show $\eta f \eta + f$ is in the centralizer of η, we need to show that $(\eta f \eta + f)(\eta(x)) = \eta((\eta f \eta + f)(x))$. We prove this by showing that $(\eta f \eta + f) \eta$ satisfies the defining property for η — that is, that $(\eta f \eta + f)(x) + (\eta f \eta + f) \eta(x) = 0 + 1$.

Now $(\eta f \eta + f)(\eta(x)) = \eta f \eta \eta(x) + f \eta(x) + \eta f(x) + f \eta(x)$ and $\eta((\eta f \eta + f)(x)) = \eta(\eta f \eta(x) + f(x))$.

By bisymmetry,

$$[\eta f \eta(x) + f(x)] + [\eta f(x) + f \eta(x)] = [\eta f \eta(x) + f \eta(x)] + [\eta f(x) + f(x)] = [0 + 1] + [0 + 1] = [0 + 1]$$

Thus the expression $(\eta f \eta + f)(\eta(x)) = \eta f(x) + f \eta(x)$ satisfies the defining equality for $\eta((\eta f \eta + f)(x))$, and we conclude that $(\eta f \eta + f)(x) = \eta f(x) + f(x)$. Clearly, if $f \in Z(\eta)$, then $\eta f \eta + f = f$. It follows that every element of $Z(\eta)$ is of the form $\eta f \eta + f$ for some automorphism $f \in \mathcal{I}$. \blacksquare

Theorem 12 For any negation η, all negations are conjugates of η by automorphisms of \mathcal{I}. More specifically, if β is a negation, then $\beta = f^{-1} \eta f$ for f the automorphism of \mathcal{I} defined by $f(x) = \eta \beta(x) + x$, where $+$ is any averaging operator such that $\eta = \eta_+$. Moreover, $\beta = g^{-1} \eta g$ if and only if $g f^{-1} \in Z(\eta)$.

Proof. The map $\eta \beta + id$ is an automorphism of \mathcal{I} since the composition of two negations is an automorphism and the average of two automorphisms is an automorphism (Theorem 5). To show that $\beta = (\eta \beta + id)^{-1} \eta (\eta \beta + id)$, we show that $(\eta \beta + id) \beta = \eta (\eta \beta + id)$. For any $x \in [0, 1]$,

$$(\eta \beta + id) \beta(x) = (\eta \beta(x) + \beta(x)) = \eta(x) + \beta(x)$$
and
\[\eta(\eta \beta + \text{id})(x) = \eta(\eta \beta(x) + x) \]

Now by bisymmetry
\[[\eta \beta(x) + x] + [\eta(x) + \beta(x)] = [\eta \beta(x) + \beta(x)] + [\eta(x) + x] \]
\[= [0 + 1] + [0 + 1] = [0 + 1] \]

Thus, using the defining property of \(\eta \), \(\eta(x) + \beta(x) = \eta(\eta \beta(x) + x) \), or
\[(\eta \beta + \text{id}) \beta = \eta(\eta \beta + \text{id}) \]
as claimed. \(\blacksquare \)

The next theorem follows easily.

Theorem 13 Let \(\triangledown \) be an averaging operator on \(I \), and let \(\eta \) be the negation determined by the equation \(x + \eta(x) = 0 + 1 \). The map
\[\text{Neg} (I) \rightarrow \text{Aut} (I)/Z(\eta) : \beta \mapsto Z(\eta)(\eta \beta + \text{id}) \]
is a one-to-one correspondence between the negations of \(I \) and the set of right cores of the centralizer \(Z(\eta) \) of \(\eta \).

5 Averaging Operators and Nilpotent t-norms

A commutative, associative binary operation \(\Delta \) on \(I \) is a **convex, Archimedean t-norm** if the following conditions hold: (1) \(1 \triangle x = x \) for all \(x \in [0, 1] \); (2) The operation \(\Delta \) is increasing in each variable, that is, if \(x, y, x_1, y_1 \in [0, 1] \) with \(x \leq x_1 \) and \(y \leq y_1 \), then \(x \Delta y \leq x_1 \Delta y_1 \); (3) The operation \(\Delta \) is Archimedean, that is, \(x \Delta x < x \) for all \(x \in (0, 1) \); (4) The operation \(\Delta \) is convex, that is, if \(x \Delta y \leq c \leq x_1 \Delta y_1 \), there is an \(r \) between \(x \) and \(x_1 \) and an \(s \) between \(y \) and \(y_1 \) such that \(c = r \Delta s \).

The condition of convexity for an operation \(\Delta^2 \rightarrow I \) is equivalent to continuity of that binary operation in the usual topology on the unit interval. All of the t-norms and t-conorms we consider are convex and Archimedean.

A t-norm is **nilpotent** if for each \(x \in [0, 1] \) there is a positive integer \(n \) such that
\[x \triangle \cdots \triangle x = 0 \]
or, equivalently, if there exists an element \(y \in (0, 1) \) with \(x \Delta y = 0 \). In a paper on negations and nilpotent t-norms \(^{11}\), we showed that a negation is naturally associated with a nilpotent t-norm by the condition
\[\eta_\Delta(x) = \sqrt[n]{\{ y : x \Delta y = 0 \}} \]
that is, \(x \triangle y = 0 \) if and only if \(y \leq \eta_\Delta(x) \).
Notation 14 We will use the symbol \blacktriangle for the Lukasiewicz t-norm

$$x \blacktriangle y = (x + y - 1) \lor 0$$

and the symbol \circ for the common negation

$$\circ(x) = 1 - x$$

Recall that for an automorphism γ of I, the nilpotent t-norm \blacktriangle, generated by γ is defined by

$$x \blacktriangle y = \gamma^{-1}((\gamma(x) + \gamma(y) - 1) \lor 0)$$

The averaging operator $\overline{+}$, generated by γ is defined by

$$x \overline{+} y = \gamma^{-1}\left(\frac{\gamma(x) + \gamma(y)}{2}\right)$$

and the negation α, generated by γ is defined by

$$\alpha(x) = \gamma^{-1}\alpha\gamma(x) = \gamma^{-1}(1 - \gamma(x))$$

Also recall that the negation η, determined by $\overline{+}$ is defined by

$$x \overline{+} \eta(x) = 0$$

It was observed in Theorem 6 that the negation generated by γ is the same as the negation associated with the averaging operator $\overline{+}$—that is, $\alpha = \eta\overline{+}$. A similar relationship holds for the nilpotent t-norm \blacktriangle.

Proposition 15 For an automorphism γ of I, the negations α, $\eta\blacktriangle$, and $\eta\overline{+}$, coincide—that is,

$$x \blacktriangle y = 0 \text{ if and only if } y \leq \alpha(x)$$

and

$$x \overline{+} \eta(x) = x \overline{+} \alpha\overline{\gamma}(x) = 0 \overline{+} 1$$

Proof. Since $x \blacktriangle y = \gamma^{-1}((\gamma(x) + \gamma(y) - 1) \lor 0)$, we have $x \blacktriangle y = 0$ if and only if $\gamma(x) + \gamma(y) - 1 \leq 0$ if and only if $\gamma(y) \leq 1 - \gamma(x)$ if and only if $y \leq \gamma^{-1}(1 - \gamma(x)) = \alpha\overline{\gamma}(x)$. The last equation follows.

We remark that this same negation is often represented in the form

$$\eta(x) = f^{-1}\left(\frac{f(0)}{f(x)}\right)$$

for a multiplicative generator f of the nilpotent t-norm. See our paper on negations and nilpotent t-norms [12], for example.
There are a number of different averaging operators that give the same negation, namely one for each automorphism in the centralizer of that negation. The same can be said for nilpotent t-norms. However, there is a closer connection between averaging operators and nilpotent t-norms than a common negation. Given an averaging operator one can determine the particular nilpotent t-norm that has the same generator, and conversely, as shown in the following theorem. This correspondence is a natural one—that is, it does not depend on the generator. Recall that for a nilpotent t-norm, the function defined by \(n_{\Delta} (x) = \bigvee \{ y : x \triangle y = 0 \} \) is a negation\(^{6}\).

Theorem 16 The condition
\[
x \triangle y \leq z \quad \text{if and only if} \quad x \ast y \leq z + 1
\]
determines a one-to-one correspondence between nilpotent t-norms and averaging operators, namely, given an averaging operator \(\dot{+} \), define \(\Delta_{\dot{+}} \) by
\[
x \Delta_{\dot{+}} y = \bigwedge \{ z : x \ast y \leq z + 1 \}
\]
This correspondence preserves generators.

Proof. By Theorem 3, we may assume that \(\dot{+} = + \), for an automorphism \(\gamma \) of I. Then
\[
x \Delta_{\dot{+}} y = \bigwedge \{ z : x \ast y \leq z + 1 \}
= \bigwedge \{ z : \gamma^{-1} \left(\frac{\gamma(x) + \gamma(y)}{2} \right) \leq \gamma^{-1} \left(\gamma(z) + \gamma(1) \right) \}
= \bigwedge \{ z : \gamma(x) + \gamma(y) \leq \gamma(z) + 1 \}
= \bigwedge \{ z : \gamma(x) + \gamma(y) - 1 \leq \gamma(z) \}
= \bigwedge \{ z : (\gamma(x) + \gamma(y) - 1) \lor 0 \leq \gamma(z) \}
= \bigwedge \{ z : \gamma^{-1} \left((\gamma(x) + \gamma(y) - 1) \lor 0 \right) \leq z \}
= \gamma^{-1} \left((\gamma(x) + \gamma(y) - 1) \lor 0 \right)
\]
Thus, in particular, \(x \Delta_{\dot{+}} y \) is a nilpotent t-norm. Moreover, \(\Delta_{\dot{+}} \) has the same generator as \(\dot{+} \). Thus the one-to-one correspondence \(\dot{+} \leftrightarrow \Delta_{\dot{+}} \) is the natural one defined in the statement of the theorem. \(\blacksquare \)

To describe the inverse correspondence directly—that is, without reference to a generating function, given a nilpotent t-norm \(\Delta_{\dot{+}} \), define a binary operation \(\ast_{\dot{+}} \) by
\[
x \ast_{\dot{+}} y = \bigvee \{ z : z \triangle z \leq x \triangle y \}
\]

10
and define Δ by

$$x +_\Delta y = (x *_\Delta y) \land (\eta_i (x) *_\Delta \eta_i (y))$$

This definition relies on the fact that for an averaging operator \oplus, η_i is an antiautomorphism of the system (I, \oplus), (Theorem 10) —and in particular, \oplus is self-dual relative to η_i:

$$x + y = \eta_i (x \lor \eta_i (y))$$

The situation with strict t-norms is somewhat more complicated. We explore that in the next section.

6 Demorgan Systems with Averaging Operators

Given a convex, Archimedean t-norm Δ and a negation η, the operation \triangledown on I defined by

$$x \triangledown y = \eta (y \lor (\Delta (x \eta_i (y)))$$

is the convex, Archimedean t-conorm dual to Δ relative to η. The dual t-conorm is nilpotent if the t-norm is nilpotent, and strict if the t-norm is strict. An algebra of the form $A = (I, \Delta, \eta, \triangledown)$, where Δ is a convex, Archimedean t-norm, η is a negation (involution) and \triangledown is the t-conorm dual to Δ relative to η, is called a demorgan system. Since the conorm is determined algebraically by Δ and η, we will often refer to an algebra (I, Δ, η) as a demorgan system.

The family of t-norms Δ that satisfy the equation

$$(x \Delta y) + (x \triangledown y) = x + y$$

for $x \triangledown y = a (x \Delta a (x))$, the t-conorm dual to Δ relative to $a (x) = 1 - x$, are called Frank t-norms[12]. Frank showed that this is the one-parameter family of t-norms of the form

$$x \Delta_{a, b} y = \log_a \left[1 + \frac{(a^x - 1) (a^y - 1)}{a - 1} \right] \quad a > 0, \quad a \neq 1$$

with limiting values

$$x \Delta_{a, \infty} y = x \land y$$
$$x \Delta_{a, 0} y = x y$$
$$x \Delta_{a, \infty} y = (x + y - 1) \lor 0$$

Notation 17 Given an automorphism γ of I, the strict t-norm \star, generated by γ is defined by

$$x \star y = \gamma^{-1} (\gamma (x) \Delta \gamma (y))$$

If Δ is an arbitrary strict t-norm, and γ is an automorphism of I, we will use the notation Δ_{γ} for the t-norm defined by

$$x \Delta_{\gamma} y = \gamma^{-1} (\gamma (x) \Delta \gamma (y))$$
Note that all the Frank t-norms for $0 < a < \infty$ are strict. The strict Frank t-norms are generated by functions of the form

$$F_{a}(x) = \frac{a^{x - 1}}{a - 1}, \quad a > 0, \quad a \neq 1$$

$$F_{1}(x) = x$$

A t-norm Δ is called nearly Frank\cite{Frank} if there is an isomorphism $h : (\mathbb{I}, \triangle, \alpha) \rightarrow (\mathbb{I}, \bullet_{F}, \alpha)$ of de Morgan systems for some Frank t-norm \bullet_{F}—that is, for all $x \in [0, 1]$,

$$h(x \triangle y) = h(x) \bullet_{F} h(y)$$

$$h(\alpha x) = \alpha h(x)$$

We generalize the notion of Frank t-norm to a de Morgan system with an arbitrary averaging operator $+$:

Definition 18 A system $(\mathbb{I}, \triangle, \eta, \triangledown, +)$ is a Frank system if \triangle is a t-norm (nilpotent or strict), η is a negation, \triangledown is a t-conorm, $+$ is an averaging operator, and the identities

1. $x \triangledown y = \eta(\eta(x) \triangle \eta(y))$
2. $x + \eta(x) = 0 + 1$
3. $(x \triangle y) + x \triangledown y = x + y$

hold for all $x, y \in [0, 1]$. A Frank system will be called a standard Frank system if $+$ is an identity and \triangledown is the identity.

Note that in a standard Frank system $(\mathbb{I}, \triangle, \eta, \triangledown, +)$, \triangle is a Frank t-norm (nilpotent or strict) and $\eta = \alpha$. Also note that if $+$ is generated by $h \in \text{Aut} (\mathbb{I})$, the Frank equation is $h^{-1} \left(\frac{h(x) + h(y)}{2} \right) = h^{-1} \left(\frac{h(\eta(x) + \eta(y))}{2} \right)$ which is equivalent to

$$h(x \triangle y) + h(x \triangledown y) = h(x) + h(y)$$

If $(\mathbb{I}, \triangle, \eta, \triangledown, +)$ is a Frank system, we will say the reduct $(\mathbb{I}, \triangle, +)$ determines a Frank system, since η is determined algebraically by $+$, and \triangledown by η and \triangle.

Theorem 19 The system $(\mathbb{I}, \triangle, \eta, \triangledown, +)$ is a Frank system if and only if it is isomorphic to a standard Frank system.

Proof. Suppose $(\mathbb{I}, \triangle, +)$ determines a Frank system. There is an automorphism g of \mathbb{I} such that $+ = +_{g}$, and g is also an isomorphism of Frank systems

$$g : (\mathbb{I}, \triangle, +) \approx (\mathbb{I}, \triangle_{g^{-1}}, +_{id})$$

where $+_{id} = av$. Thus $\triangle_{g^{-1}}$ is a Frank t-norm. The converse is clear. \blacksquare
The Frank systems induce relations

\[R_n : \text{Av}(I) \to \text{Nilp}(I) \quad \text{and} \quad R_s : \text{Av}(I) \to \text{Strict}(I) \]

where \(\text{Av}(I) \) denotes the set of averaging operators, \(\text{Nilp}(I) \) the set of nilpotent t-norms, and \(\text{Strict}(I) \) the set of strict t-norms.

Corollary 20 Let \(R_n \subset \text{Av}(I) \times \text{Nilp}(I) \) be the relation defined by \((+, \Delta) \in R_n\) if and only if \((I, \Delta, +) \) determines a nilpotent Frank system. Then \((+, \Delta) \in R_n\) if and only if \(x \Delta y = \Lambda \{ z : x + y \leq z + 1 \}\). Moreover, \(R_n \) determines a one-to-one correspondence between \(\text{Av}(I) \) and \(\text{Nilp}(I) \).

Proof. Suppose \((I, \Delta, +) \) determines a Frank system. By Theorem 19, there is an automorphism \(g \) of \(I \) such that \(+ = +_g \) and \(g \) is also an isomorphism of Frank systems

\[g : (I, \Delta, +_g) \approx (I, \Delta_{-1, +_{ud}}) \]

where \(+_{ud} = \text{av} \). Thus \(\Delta_{-1} \) is a Frank t-norm, whence \(\Delta_{-1} = \Delta \) is the Lukasiewicz t-norm and \(\Delta = \Delta \) and \((I, \Delta, +) \approx (I, \Delta, +) \). Then from Theorem 16, we know that \(R_n \) is the natural one-to-one correspondence given by the identity \(x \Delta y = \Lambda \{ z : x + y \leq z + 1 \} \).

Corollary 21 Let \(R_s \subset \text{Av}(I) \times \text{Strict}(I) \) be the relation defined by \((+, \Delta) \in R_s\) if and only if \((I, \Delta, +) \) determines a strict Frank system. The following are equivalent.

1. \((+, \Delta) \in R_s\)
2. \(\Delta = \bullet_{R,s} \) and \(+ = +_{R,s} \) for some automorphism \(g \) of \(I \) and \(a \in (0, \infty) \)
3. \(\Delta = \bullet_f \) and \(+ = +_{R,s} \) for some automorphism \(f \) of \(I \), \(a, r \in (0, \infty) \).

Proof. If \(\Delta \) is strict, \(\Delta = \bullet_f \) for some automorphism \(f \) of \(I \). Then, in the notation of the proof of Theorem 19, \(+ \approx +_{av} \) and \(\Delta_{-1} = \bullet_{R,s} = \bullet_{R,s} \) for some \(a \in \mathbb{R}^+ \), so \(\Delta = \bullet_f \) for some \(a \in \mathbb{R}^+ \). This means \(rf^a = F_a \) for some \(r, a \in \mathbb{R}^+ \), where \(r \) is interpreted as the automorphism \(r(x) = x^r \). Thus \((I, \Delta, +) \approx (I, \bullet_f, +_{R,s}) \).

Thus \((I, \bullet_f, +) \) determines a strict Frank system if and only if \(f \) and \(g \) are related by \(g \in F_{D^{-1}} \) for some \(a \). Note that for every strict Archimedean, convex t-norm \(\Delta = \bullet_f \) there is a two-parameter family of Frank systems

\[F_{r,s}^{-1} f : (I, \bullet_f, +_{R,s}) \approx (I, \bullet_f, av) \]

and for every averaging operator \(+ = +_{av} \) there is a one-parameter family of strict Frank systems

\[g : (I, \bullet_f, +_{av}) \approx (I, \bullet_f, av) \]

13
Also, for every nilpotent Archimedean, convex t-norm \(\Delta = \cdot \), there is a unique Frank system
\[
\gamma : (\mathbb{I}, \cdot, +, \cdot) \approx (\mathbb{I}, \cdot, \alpha, \cdot)
\]
Thus every system of the form \((\mathbb{I}, \Delta, \eta)\) or \((\mathbb{I}, +)\) is a reduct of one or more Frank systems. However, not every de Morgan system can be extended to a Frank system. The following theorem identifies those that can. A nilpotent de Morgan system is called a Boolean system\(^{11}\) if the negation is the one naturally determined by the t-norm.

Theorem 22 A de Morgan system with nilpotent t-norm can be extended to a Frank system if and only if the system is Boolean. A de Morgan system \((\mathbb{I}, \Delta, \eta)\) with strict t-norm \(\Delta\) can be extended to a Frank system if and only if there exists \(a \in \mathbb{R}^+\) such that for \(f, g \in \text{Aut}(\mathbb{I})\) with \(\Delta = \cdot_f\) and \(\eta = \alpha_f\),
\[
F^{-1}_a \mathbb{R}^+ f \cap Z(a) g \neq \emptyset
\]
In this case,
\[
F^{-1}_a \mathbb{R}^+ f \cap Z(a) g = \{h\}
\]
and the Frank system is
\[
(\mathbb{I}, \cdot_f, \alpha, +, a) \approx (\mathbb{I}, \cdot_{(k,a)}, \alpha, +, a)
\]
Moreover, there is at most one such \(a\). The t-norm in the Frank system is nearly Frank if and only if \(g = a\) in the centralizer of \(a\).

Proof. If the t-norm in a Frank system is nilpotent, it is generated by the same automorphism as the averaging operator. Thus the negation is also generated by the same automorphism as the t-norm.

Consider the de Morgan system \((\mathbb{I}, \cdot_f, \alpha_f)\) with strict t-norm. Assume
\[
F^{-1}_a \mathbb{R}^+ f \cap Z(a) g \neq \emptyset
\]
Then by Theorems 28, 29 in the de Morgan systems paper\(^{10}\)
\[
F^{-1}_a \mathbb{R}^+ f \cap Z(a) g = \{h\}
\]
Thus for some \(r \in \mathbb{R}^+\) and \(k \in Z(a)\)
\[
F^{-1}_a rf = kg = h
\]
Thus \(rf = F_h \cdot_e h\), implying \(\cdot_e = \cdot_{(k,h)}\). Thus \((\mathbb{I}, \cdot_f, \alpha_f, +) \approx (\mathbb{I}, \cdot_{(k,a)}\cdot \alpha, +, a)\) is a Frank system. If \(F^{-1}_a \mathbb{R}^+ f \cap Z(a) g = \{k\}\) for some \(b \in \mathbb{R}^+\), then \(\cdot_{(k,b)} = \cdot_{(k,b)}\cdot \alpha = \cdot_{(k,b)}\), implying that \(\cdot_{(k,b)} = \cdot_{(k,b)}\). But no t-norm is both Frank and nearly Frank\(^{10}\) from which it follows that \(kh^{-1} = 1\) and, from that, that \(a = b\)^{12}.

14
Now suppose \((\mathbb{I}, \bullet, a_0) \) can be extended to the Frank system \((\mathbb{I}, \bullet, a_0, +_a) \). Then \(a_0 \) is the negation for \(+_a \) so that \(a_0 = a_0 \) and we have \(h g^{-1} \in Z(a) \), or \(h = kg \) with \(k \in Z(a) \). Then by Corollary 21, \((\mathbb{I}, \bullet, a_0, +_a) = (\mathbb{I}, \bullet, a_0, +_a) \), so \(r f = F_a h \) for some \(r, a \in \mathbb{R}^+ \), or \(F_a^{-1} r f = h = kg \) for any \(g \in F_a^{-1} R^+ f \cap Z(a) \).

The intersection \(F_a^{-1} R^+ f \cap Z(a) \) may be empty for all \(a > 0 \). That is, the case when \(F_a^{-1} R^+ f = \emptyset \) has no solution for \(r, a > 0 \) and \(h \in Z(a) \). For a particular example of this, take \(f = \text{id} \), \(g(x) = x \) for \(0 \leq x \leq \frac{1}{2} \). Then \(F_a^{-1} r = kg \) implies that \(h(x) = F_a^{-1} r(x) \) for \(0 \leq x \leq \frac{1}{2} \) and since \(h \in Z(a) \), \(h(x) = 1 - F_a^{-1} r(1 - x) = a F_a^{-1} r(a(x)) \) for \(\frac{1}{2} \leq x \leq 1 \). But then

\[
 g(x) = \begin{cases}
 x & \text{if } 0 \leq x \leq \frac{1}{2} \\
 F_a^{-1} r(x) & \frac{1}{2} \leq x \leq 1
 \end{cases}
\]

Now simply choose \(g \) such that \(g(x_0) \) is not differentiable for some \(x_0 \in (\frac{1}{2}, 1) \), and such an equality cannot hold for any choice of \(a \) and \(r \). So there are DeMorgan systems \((\mathbb{I}, \bullet, a_0) \) that are not reducts of Frank systems.

References

