Direct-Sum Representations of Injective Modules

CARL FAITH and ELMERY A. WALKER

Rutgers University, New Brunswick, New Jersey,
New Mexico State University, University Park, New Mexico, and
Institute for Advanced Study, Princeton, New Jersey

Received October 25, 1965

One of the main results of this article is the following:

A. Theorem 5.3. The following conditions on a ring R are equivalent:
 (1) R is quasi-frobenius; (2) each injective right R-module is projective; (3) each injective left R-module is projective.

 The "dual" theorem obtained by the substitutions "injective" \Rightarrow "projective" in this statement is the subject of another paper [10]. If (2^*) [resp. (3^*)] denotes the statement dual to (2) [resp. (3)], we thus obtain the equivalence of the statements: (1), (2), (3), (2^*), and (3^*).

 The observation that (2) implies that each injective module is contained in a direct sum of cyclic R-modules led to the more general study indicated by the title. Our first theorem of this type is as follows:

B. Theorem 1.1 and 3.3. The following conditions on a ring R are equivalent:
 (1) R is right noetherian.
 (2) There exists a cardinal number c such that each injective right R-module is a direct sum of modules generated by c elements.
 (3) There exists a cardinal number d such that each injective right R-module is contained in a direct sum of modules generated by d elements.

 A corollary is a theorem of Papp [19]: If R is a ring such that each injective right R-module is a direct sum of indecomposable modules, then R is right noetherian.

We also obtain:

C. Theorem 3.1. If each right R-module is contained in a direct sum of finitely generated modules, then R is right artinian.

This generalizes the theorem of Cohen and Kaplansky [6] (for commutative rings) and Chase [5] (for non-commutative rings) which states that R is

* Work on this paper was supported by National Science Foundation grants GP-377 and GP-3581.
right artinian in case each right R-module is a direct sum of finitely generated modules. (The Cohen-Kaplansky theorem was further restricted to direct sums of cyclic modules.) Combining C with a theorem of Mocia, we obtain:

D. COROLLARY 3.2. A commutative ring R is artinian if and only if each injective right R-module is a direct sum of finitely generated modules.

If R is a ring with property of C, then it is right noetherian by B, and the following result is applied to deduce that R is right artinian.

E. COROLLARY 2.3. If R is right noetherian, and if the injective hull of each cyclic (resp. finitely generated) right R-module is finitely generated, then R is right artinian.

The proof of E makes use of Goldie's theorem. We divide out the maximal nilpotent ideal X and $R = R/N$ inherits the hypothesis, namely, the injective hull of R as an R-module is finitely generated. But R, being semi-prime, has a classical right quotient ring Q which is a semi-simple ring. Furthermore, Q is isomorphic to the injective hull of R, considered as an R-module. So in the case of quartet fields of integral domains, Q is a noetherian R-module only if $Q = R$. Thus, $R = R/N$ is semi-simple, so, in the presence of the a.c.c. on right ideals, R is right artinian.

Going back to A, if each injective module is projective, then each module is contained in a direct sum of copies of R, and hence R is a cogenerator in the category M_R of right R-modules (see Section 4). We prove the following theorem to deduce that R is right self-injective: (R is right artinian by C).

F. THEOREM 4.1. If M_R has a finitely generated projective cogenerator P, and if R islo R is semi-simple, then P and R are injective in M_R.

Thus (2) of A, implies that R is right self-injective and right artinian, so R is quasi-frobenius by a theorem of Hida [23] (see Section 5).

Among other things we prove that any indecomposable projective and injective module over R is a direct summand of R (Corollary 2.5). Section 6 is a study of direct summands of completely decomposable modules. The principal result there is that if $Q = \bigoplus Q_i$ is a direct sum of indecomposable injective modules, then any direct summand of Q is a direct sum of some of the Q_i's, provided either Q is injective, or the Q_i are countably generated.

G. BACKGROUND

Throughout this paper each ring R will be a ring with identity element 1, and each module M will be unitary in the sense that $x1 = x$ for all $x \in M$. \mathfrak{N}_R (resp. \mathfrak{N}_L) will denote the category of all right (resp. left) R-modules.
If $M \in \mathfrak{M}$ then variously \hat{M}, or inj. hulla$M(M)$, will denote the injective hull of M (Eckmann-Schepf [7]).

In any category, direct products of injective objects are injective. However, direct sums of injective objects are not in general injective. We shall have occasion to use the following theorem (Cartan-Eilenberg-Bass-Papp) several times in the sequel.

0.1. Theorem. The following conditions on a ring R are equivalent:

(a) R is right noetherian,
(b) Any direct sum of injective right R-modules is injective.
(c) Any countable direct sum of injective right R-modules is injective.

Proof. (a) \Rightarrow (b) is an exercise in Cartan-Eilenberg [4]. (b) \Rightarrow (c) is trivial, while (c) \Rightarrow (a) is Bass's observation (see Chase [5], p. 471 and Papp [79]).

An injective right R-module M is said to be Σ-injective in case a direct sum of arbitrarily many copies of M is injective; M is countably Σ-injective in case a direct sum of \aleph-many copies of M is injective. In Section 6 we use the next theorem which was proved in [10].

0.2. Theorem. An injective module M is Σ-injective if and only if it is countably Σ-injective.

Proof. We give a short proof which replaces the laborious proof given in [10].

Let M be countably Σ-injective, and let $Q = \sum_{n \in \mathbb{N}} Q_n$, be a direct sum of arbitrarily many copies Q_n of M. For any subset A of I, let $Q_A = \sum_{n \in A} Q_n$, and let π_A denote the projection of Q on Q_A having kernel Q_{I-A}. In case $A = \{a\}$, denote π_a by π_a.

Next, assume Q is not injective. Then there exists a right ideal S of R, and a map $f : S \to Q$ which is not extendable to a map $g : R \to Q$. In particular, there does not exist a finite subset F of I such that $f(S) \subseteq Q_F$ (since Q_F is injective and a direct summand of Q). This implies that there exist a countably infinite subset A of I such that $\pi_a f \neq 0 \forall a \in A$. Then $\pi_a f = \pi_a f \neq 0$ for any $a \in A$, so $\pi_a f(S)$ is not contained in Q_B for any finite subset B of A. Since Q_A is injective by hypothesis, there exists a mapping $h : R \to Q_A$ extending $\pi_a f : S \to Q_A$. But $h(R)$, being a cyclic submodule of Q_A, is contained in Q_B for some finite subset B of A. Then $\pi_B f(S) \subseteq h(R) \subseteq Q_B$, contradicting the assertion above, and proving that Q must be injective.

Although we will not use the following theorem, we give it because of its connection with Theorem 0.2.

Theorem. If each injective module in \mathfrak{M} is countably Σ-injective, then
R is right noetherian (and hence arbitrary direct sums of injective modules in \(\mathfrak{M}_R \) are injective).

Proof. By Theorem 0.1, it suffices to show that any direct sum \(Q = \sum_{i=1}^\infty Q_i \) of countably many injective modules \(\{Q_i | i = 1, 2, \ldots \} \) is injective. Now \(M = \prod_{j=1}^\infty Q_j \) is injective, and, by hypothesis, a direct sum \(P = \sum_{i=1}^\infty M_i \) of countably many copies \(\{M_i | i = 1, 2, \ldots \} \) of \(M \) is injective. But \(M_i \) contains as a direct summand a copy \(Q_j \) of \(Q_j \), \(j = 1, 2, \ldots \cdot \). Write \(M_i = Q_j \oplus P_i \). Then \(P = \sum_{i=1}^\infty Q_j \oplus \sum_{i=1}^\infty P_i \), so that \(Q_j \), being isomorphic to the direct summand \(\sum_{i=1}^\infty Q_j \oplus P_i \) of \(P \), is injective.

In Section I we shall use the following theorem of Matlis [16] and Papp [19].

0.3. **Theorem.** If \(R \) is right noetherian, then any injective right \(R \)-module is a direct sum of indecomposable modules.

Z. Papp has shown that this property characterizes noetherian rings (cf. Corollary 1.3).

1. **Characterizations of Noetherian Rings**

1.1. **Theorem.** \(R \) is right noetherian if and only if there exists a cardinal number \(c \) such that each injective right \(R \)-module is a direct sum of modules each generated by \(c \) elements.

Proof. If \(R \) is right noetherian, then by Theorem 0.3, each injective \(M \in \mathfrak{M}_R \) is a direct sum of indecomposable injective modules. Since an indecomposable injective module \(D \) is the injective hull \(C \) of any nonzero cyclic submodule \(C \), it suffices to show that there exists a cardinal number \(c \) such that each such \(D \) is generated by \(c \) elements. Since the collection of all isomorphism classes of cyclic modules is a set, it follows that the collection of all isomorphism classes of indecomposable injective modules is a set \(\{\mathfrak{M}_i | i \in I\} \). If \(M \in \mathfrak{M}_i \) is generated by \(c_i \) elements, then \(c = \sum_{i \in I} c_i \) (cardinal sum) is the desired cardinal.

Conversely, assume that such a cardinal number exists. \(R \) is right noetherian if and only if each direct sum of injective modules is injective (Theorem 0.1). By our assumption it suffices to show that if \(M \) is a direct sum \(\sum_{i=1}^\infty M_i \) of injective modules \(M_i \), each generated by \(c_i \) elements, then \(M \) is injective. For simplicity let \(c \) be an infinite cardinal \(\geq | R | \). We may assume that \(I \) is infinite.

Let \(B \) be a set with cardinality \(> 2^c \), where \(d = | I | \). For each \(i \in I \), let \(N_i = \prod_{b \in B} M_i, b \), the direct product of \(| B | \) copies of \(M_i \), and let \(P = \prod_{i \in I} N_i \).
Since a direct product of injective modules is always injective, N_i is injective for all i, and P is injective. By hypothesis, we may write $P = \sum_{i \in I} Q_i$, where Q_i is generated by c elements. Well-order I, and take one of the direct summands $M_{i,k}$ of N_i. Since $M_{i,k}$ is generated by c elements, and since c is infinite, and since each element of $M_{i,k}$ is contained in a direct sum of finitely many $Q_i \mid g_i \in G$, then $M_{i,k}$ is contained in $P = \sum_{i \in I} Q_i$, where G_i is a subset of G consisting of c elements. Since each Q_i is generated by c elements, P_i is generated by c^2 elements. Consequently $|P_i| \leq c^2 \leq |R| \leq c^2 - c$, so P_i has at most 2^c subsets. Since $(M_{i,k} \cap P_i \mid b \in B)$ is an independent collection of submodules of P_i, and since $|B| > 2^c$, then $M_{i,k} \cap P_i = 0$, for some $b \in B$. The projection δ of $M_{i,k}$ into $\sum_{\text{all } Q_i}$ is a monomorphism, and $\delta(M_{i,k}) \subseteq P_i = \sum_{i \in I} Q_i$, where G_i is a subset of G consisting of c elements, and $G_i \cap G_j$ is empty.

For $x \in I$, assume that there exist mutually disjoint subsets $(G_{k,x})_{k \in I}$ of G such that G_k contains c elements, and such that $P_x = \sum_{i \in I} Q_i$ contains a copy $M_{i,k}$ of M_x. Let $H_x = \bigcup_{k \in I} G_k$, and set $S_x = \sum_{i \in I} Q_i = \sum_{i \in I} P_i$. Since each P_i is generated by c elements, and since $|H_x| \leq c \cdot d$, it follows that $|S_x| \leq c \cdot d \cdot c = c \cdot d^2$, so that S_x has at most $2^{c \cdot d^2}$ subsets. Since $|B| > 2^{c \cdot d^2}$, by the reasoning above, there exists a $b \in B$ such that $M_{i,k} \cap S_x = 0$. Thus there exists a subset $G_{k,x}$ disjoint from H_x such that G_k is generated by c elements, and such that $P_x = \sum_{i \in I} Q_i$ contains a copy $M_{i,k}$ of M_x. By transfinite induction G_k and P_x exist $\forall x \in I$. Let $H = \bigcup_{x \in I} G_k$. Then

$$P = \sum_{i \in I} P_i \oplus \sum_{x \in I} Q_x.$$

Since $M_{i,k}$ is injective, and since P_x contains an isomorphic copy, $M_{i,k}$ is isomorphic to a direct summand of P_x, $\forall x \in I$. Since $\sum_{i \in I} P_i$ is a direct summand of P, and since P is injective, it follows that $\sum_{i \in I} M_{i,k}$, being isomorphic to a direct summand of P, is injective. Since $\sum_{i \in I} M_{i,k}$, M is injective.

The condition stated in the theorem seems first studied by S.U. Chase [5, 471, Lemma 4.1]. There, in a lemma contributed by Bass, it is proved that any semi-primary ring R satisfying it is a right Artinian. $(R$ is semi-primary in case $R/\text{rad } R$ is semisimple and $R/\text{nilpotent}$.

1.2. COROLLARY. A ring R is right noetherian if and only if there exists a cardinal number d such that every injective module in \mathcal{M}_R is a direct sum of injective tails of modules generated by d elements.

Proof. The necessary follows from the theorem. Let F denote the free module with a free basis of cardinality d. Then each element of F is a
direct sum of injective hulls of modules of the form F/K. Since $\{F | K \text{ a submodule of } F\}$ is a set, $\{F/K | K \text{ a submodule of } F\}$ is a set. If F/K is generated by e_K elements, then each module in $\{F/K | K \text{ a submodule of } F\}$ is generated by $e = \sum e_K$ elements. Thus, there exists a cardinal e with the property stated in the theorem, so the theorem applies. Thus R is right noetherian.

1.3 COROLLARY (Theorem of Papp [19]). If each injective module in \mathbb{M}_R is a direct sum of indecomposable modules then R is right noetherian.

Proof. If N is an indecomposable injective module, then N is the injective hull of any nonzero cyclic module, so R is right noetherian by the corollary.

Modifying Bass's terminology slightly, we say that a collection of modules is an injective decomposition basis for \mathbb{M}_R in case each injective module in \mathbb{M}_R is a direct sum of injective hulls of modules in that collection. In this language, the corollary becomes

1.4. COROLLARY. A ring R is right noetherian if and only if there exists a cardinal number d such that the modules in \mathbb{M}_R generated by d elements form an injective decomposition basis for \mathbb{M}_R.

There is a similar characterization of artinian rings.

1.5. COROLLARY. A ring R is right artinian if and only if the semi-simple modules in \mathbb{M}_R form an injective decomposition basis for \mathbb{M}_R.

Proof. If R is right artinian, then R is right noetherian, so each injective $M \in \mathbb{M}_R$ is a direct sum of indecomposable injective modules. If M is indecomposable injective, then M is the injective hull of any nonzero submodule. Since R is right artinian, each nonzero module contains a simple submodule. Consequently, each indecomposable injective is the injective hull of a simple module, proving one part.

The converse depends on theorems of H. Bass, C. Hopkins, and J. Levitzki. A ring R is left perfect in case each left R-module has a projective cover. We do not use this concept, but rather the equivalence of the other conditions in:

BASS'S THEOREM [3]. The following conditions on a ring R are equivalent:

(1) R is left perfect.

(2) $R/\text{rad } R$ is semi-simple, and $\text{rad } R$ is right T-nilpotent.

An equivalent formulation is: R is right noetherian if and only if some injective decomposition basis of \mathbb{M}_R forms a set.
(3) \(R \) satisfies the d.c.e. on principal right ideals.
(4) \(R \) has no infinite set of orthogonal idempotents, and each nonzero right \(R \)-module has nonzero socle.

C. Hopkins [12] and J. Levitzki [14] proved that any right artinian ring is right noetherian. Hopkins' proof has the following corollary, which we need:

A semi-primary ring \(R \) is right noetherian if and only if it is right artinian.

Proof of the converse. If \(M_R \) has such an injective decomposition basis, then \(R \) is right noetherian by the corollary. Hence, by the result of C. Hopkins, it suffices to prove that \(R \) is semi-primary.

Let \(M \) be any nonzero module, and \(\overline{M} \) its injective hull. Since socle \((\overline{M}) \neq 0 \), then socle \(M \neq 0 \). Since \(R \) is right noetherian, any collection of orthogonal idempotents in \(R \) is necessarily finite. Since (4) of Buss's theorem is satisfied, we conclude (2): \(\text{rad} R \) is semi-simple, and \(\text{rad} R \) is right \(T \)-nilpotent. In particular, \(\text{rad} R \) is nil. But a theorem of Levitzki [15] states that in a right noetherian ring, any nil ideal is nilpotent. Consequently, \(R \) is semi-primary as needed.

2. INJECTIVE HULLS OF FINITELY GENERATED MODULES

In the next section we encounter the following condition: If \(C \) is a cyclic or finitely generated module, then \(\overline{C} \) is finitely generated. This condition for artinian rings was studied by Rosenberg and Zelinsky in [2]. We show that any noetherian ring satisfying this condition must be artinian. Characteristically, a single cyclic module, namely \(R \) modulo the maximal nilpotent ideal \(N \), does the damage.

If \(M, N \in \mathcal{M}_R \), and \(M \supseteq N \), then \(M \cap N \), or \((M \cap N)_R \), signifies that \(M \) is an essential extension of \(N \) (Fekkenn-Schoof [7]). A right noetherian semi-prime ring is just a right noetherian ring with no nilpotent ideals.

2.1. Lemma. If \(R \) is a right noetherian semi-prime ring, and if \(\hat{\mathcal{M}} = \text{inj. hull} \ \mathcal{M} \) is finitely generated in \(\mathcal{M}_R \), then \(R \) is semi-simple, and \(R = \bar{R} \).

Proof. By Coldie's theorem [11], \(R \) is a unique classical right quotient ring \(Q = \{ab^{-1} | a, \text{regular } b \in R \} \) which is a semi-simple ring. If \(q = ab^{-1} \) and if \(q \neq 0 \), then \(a = qb \) is a nonzero element of \(q \mathcal{M} \cap R \), showing that \((Q \cap R)_R\). Thus, the natural right \(R \)-module \(Q \) is contained in \(R \). It is not hard to show that \(Q = \bar{R} \), and that the ring operation in \(Q \) induces the module operation in \(R \) (see [9]).
Since \mathcal{R} is finitely generated, it is noetherian. If b is a regular element of R, then $b^{-1} \in \mathcal{O}$, and $b^{-n}a = b^{-(n+1)}(ba), \forall a \in R$, showing that
\[R \subseteq b^{-1}R \subseteq \cdots \subseteq b^{-n}R \subseteq \cdots. \]
Since \mathcal{R} is noetherian, $b^{-n}R = b^{-(n+1)}R$ for some n, so $b^{-(n+1)} = b^{-n}a$, for some $a \in R$. But then, $b^{-1} = a \in R$. Since this is true for all regular $b \in R$, it follows that $Q = R$, that is, R is semi-simple.

2.2. Theorem. If R is a right noetherian ring, and N is its maximal nilpotent ideal, and if $R/N = \text{inj. hull } \mathcal{R}(R/N)$ is finitely generated in \mathcal{M}_R, then R is right artinian.

Proof. Let Q be the injective hull of R/N in $\mathcal{M}_{R/N}$. Then Q is an R-module and as such is an essential extension of R/N. Thus we may assume the R-module inclusions $R/N \subseteq Q \subseteq R/N$. Since R/N is finitely generated and R is noetherian, Q is finitely generated as an R-module and hence as an R/N-module. By the lemma, R/N is semi-simple. This implies that R is a semiprimary right noetherian ring, so the theorem of Hopkins stated in Section 1 yields R right artinian.

2.3. Corollary. If R is right noetherian, and if the injective hulls of cyclic (resp. finitely generated) modules in \mathcal{M}_R are finitely generated, then R is right artinian.

2.4. Proposition. Let $a \geq b$ be cardinals with $a > b$. Suppose $C \in \mathcal{M}_R$ is generated by b elements and \hat{C} is contained in a direct sum of modules each of which is generated by fewer than a elements. Then

(i) if $a = \chi_b$, then \hat{C} is finitely generated;
(ii) if $b \geq \chi_a$, then \hat{C} is generated by a family.

Proof. Let $\{Q_i : i \in I\}$ be modules in \mathcal{M}_R each generated by a elements such that \hat{C} is contained in their direct sum. Since each generator of C is contained in a direct sum of finitely many of the Q_i, it follows that $C \in \mathcal{M}_R$ contained in $K = \sum_{i \in I} Q_i$, where I is a subset of I with the properties:
\[b < \chi_b \Rightarrow c = \text{card } I < \chi_b \]
\[b \geq \chi_a \Rightarrow c = \text{card } I = b. \]

Now let f denote the projection of $\sum_{i \in I} Q_i$ onto K. Since $\text{Ker}(f) \cap C = 0$, then $\text{Ker}(f) \cap C = 0$, showing that f maps C monomorphically into K. If $\beta = \chi_b$, then $\eta < \chi_b$ and $t < \chi_b$, so K is a direct sum of finitely many finitely generated modules, that is, K is finitely generated. But then, so is any direct summand of K; in particular $f(C)$, whence C is finitely generated.
If $b \geq \chi_0$, then $c = b$, so K is generated by $ba = c$ elements, so $f(C)$ and \mathcal{C} are each generated by a elements in this case.

It is known that if R is a QF-ring, then any indecomposable injective module is isomorphic to a direct summand of R. Since each injective module over a QF-ring is projective (see Section 5), this is a special case of the following.

2.5. Corollary. If R is any ring, then an indecomposable injective and projective right R-module M is isomorphic to a direct summand of R; that is, there exists an idempotent $e \in R$ such that $M = eR$.

Proof. Write $M = \mathcal{C}$, where C is any nonzero cyclic submodule of M. Since M is projective, \mathcal{C} is contained in a direct sum of copies of R, and the proof of the proposition shows that \mathcal{C} is contained in a direct sum $R^{(a)} = R_{a_1} \oplus \cdots \oplus R_{a_n}$ of a copies of R. Hence, there is a least integer k such that $R^{(a)} = R_{k} \oplus \cdots \oplus R_k$ contains a copy B of C. Since B is indecomposable and injective, any two nonzero submodules of B have nonzero intersection. Thus, if $k > 1$, then B cannot have nonzero intersection with each component of R_1 of $R^{(a)}$. But if $B \cap R_k = 0$, for example, then the projection of $R^{(a)}$ on $R^{(a-1)} = R_{a} \oplus \cdots \oplus R_{a}$ maps B monomorphically into $R^{(a-1)}$, which contradicts the definition of k. Thus, $k = 1$, so $B \subseteq R_1$, and B, being injective, is a direct summand of R_1. Thus, \mathcal{C} is isomorphic to a direct summand of R.

3. Direct Sums of Finitely and Countably Generated Modules

A theorem of Kaplansky [6] states that if a module M is a direct sum of countably generated modules then each direct summand of M has the same property. We use this to prove the following theorem which generalizes the theorem of Cohen-Kaplansky [6] and Chase [5].

3.1. Theorem. If each module in \mathfrak{M}_R is contained in a direct sum of finitely generated modules, then R is right artinian.

Proof. If $M \in \mathfrak{M}_R$ is injective, then M is a direct summand of each over-module, so M is a direct sum of countably generated modules by Kaplansky’s theorem. Then Theorem 1.1 implies that R is right noetherian. Now let C be any cyclic module in \mathfrak{M}_R. Then \mathcal{C} is contained in a direct sum of

Footnote: The hypothesis implies that each injective module is a direct sum of finitely generated modules. (Hint: combines the proof of 3.1 with Theorem 0.1.) In this case, R is also left-artinian by Rosenberg-Zelinsky [20].
finely generated modules, so C is finely generated by Proposition 2.4. Then R is right artinian by Corollary 2.3.

3.2. **Corollary.** Let R be a commutative ring. Then R is artinian if and only if each injective R-module is a direct sum of finely generated modules.

Proof. One way follows from the theorem above. Conversely, let R be a commutative artinian ring. Then, since R is noetherian, an injective module M is a direct sum of indecomposable modules. By a theorem of Macaia [17, p. 122, Lemma 2.1], an indecomposable injective module over R is finely generated. This completes the proof.

If R is a ring with the property of the theorem, then each finely generated module C is contained in a direct sum of finely generated modules and then Proposition 2.4 implies that C is finely generated. Expressed otherwise, if C is a module of finite length, then C has finite length. Rosenberg and Zelinsky [21] have shown that in general right artinian rings do not enjoy this latter property, consequently cannot have the former property.

Carol Walker [23] has generalized Kaplansky’s theorem as follows: If M is a module which is a direct sum of modules each generated by c elements, where c is an infinite cardinal, then each direct summand of M is a direct sum of modules each generated by c elements. Using this theorem, we can generalize Theorem 1.1 as follows:

3.3. **Theorem.** A ring R is right noetherian if and only if there exists a cardinal number c such that each right R-module is contained in a direct sum of modules generated by c elements.

Proof. If R is right noetherian, Theorem 1.1 and the fact that every module is contained in an injective module gives the desired c. Conversely, suppose such a c exists. Then the generalization of Kaplansky’s theorem above, together with Theorem 1.1 yields R right noetherian.

4. **COGENERATORS**

In Section 5 we characterize a ring R with the property that each injective module is projective. Since each module over R is contained in an injective module, it then follows that each module is contained in a direct sum of copies of R. In particular, R is then a cogenerator. This section is devoted to proving that if R is a cogenerator and $R/\text{rad } R$ is semi-simple, then R is self-injective. This last fact paves the way for the characterization mentioned above.
DEFINITION. A module C in \mathfrak{M}_R is a cogenerator in case it possesses one of the following equivalent properties:

(1) Each module $M \in \mathfrak{M}_R$ can be mapped monomorphically into a direct product of copies of C.

(2) If M and N are in \mathfrak{M}_R, and $f:M \to N$ a nonzero map, then there exists a map $g:N \to C$ such that the composition map $gf:M \to C$ is nonzero.

We also need the dual concept of generator.

A module G in \mathfrak{M}_R is a generator in case it possesses one of the following equivalent properties:

(1) Each module M in \mathfrak{M}_R is an epimorph of a direct sum of copies of G.

(2) If M and N are nonzero modules in \mathfrak{M}_R, and $f:M \to N$ a nonzero map, then there exists a map $g:N \to G$ such that the composition map $fg:G \to M$ is nonzero.

The equivalence of the statements (1) and (2) are well-known, and we omit the proofs. We also use, without proof, the following characterizations:

PROPOSITION. (1) An injective module $M \in \mathfrak{M}_R$ is a cogenerator in case M contains a copy of each simple module in \mathfrak{M}_R. (2) A projective module $P \in \mathfrak{M}_R$ is a generator in case each simple module in \mathfrak{M}_R is an epimorph of P.

We can now state and prove the theorem on cogenerators needed in the following section.

4.5. THEOREM. If \mathfrak{M}_R has a finitely generated projective cogenerator P, and if R is semi-simple, then P and R are injective in \mathfrak{M}_R.

Proof. The proof is facilitated by the use of the following two results on projective modules.

1. Let P and Q be finitely generated projective modules in \mathfrak{M}_R, and let $f = \text{rad } R$. Then $P/Pf \cong Qf/Q$ if and only if $P \cong Q$.

2. Let P be a finitely generated projective module in \mathfrak{M}_R, $A = \text{End}_R P$, $Q = \text{rad } A$, and $f = \text{rad } R$. Then the ring $\text{End}_Q P/Pf$ is isomorphic to the quotient ring A/Q.

I and II appear several places in the literature. For example, I is stated in [18, p. 218], and II can be deduced from [21, p. 57, Corollary 2.5].

If U is any simple module in \mathfrak{M}_R, and if f is its injection into its injective hull \hat{U}, then the cogenerator property of P yields a map $g:U \to P$ such that $gf \neq 0$. It follows that g is a monomorphism, since $\text{Ker}(g) \cap f(U) = 0$ implies $\text{Ker}(g) = 0$.

Since R/f is semi-simple, $f = \text{rad } R$, there are only finitely many non-isomorphic simple modules U_1, \ldots, U_n. By what has just been proved, we
may assume $\tilde{U}_1, \ldots, \tilde{U}_n$ are contained in P. Since these modules are injective, they are direct summands of P, hence are finitely generated and projective along with P. Since U_1, \ldots, U_n are non-isomorphic simple submodules of P, they are independent submodules, that is, the sum $U_1 + \cdots + U_n$ is direct. Consequently the sum $\tilde{U}_1 + \cdots + \tilde{U}_n$ is direct. Furthermore, $C = \tilde{U}_1 \oplus \cdots \oplus \tilde{U}_n$, being a direct sum of projective injective modules, is projective and injective. Since U_i is simple, \tilde{U}_i is indecomposable (and injective), so $\Lambda_i = \text{End}_R \tilde{U}_i$ is a local ring. By II, $\Lambda_i/\tilde{Q}_i \cong \text{End}_R \tilde{U}_i / \tilde{U}_i J_i$, where $\tilde{Q}_i = \text{rad } \Lambda_i$, $i = 1, \ldots, n$. Since $\tilde{U}_i / \tilde{U}_i J_i$ is a simple module whose endomorphism ring is a division ring $\cong \Lambda_i / \tilde{Q}_i$, $\tilde{U}_i / \tilde{U}_i J_i$ must be a simple module. Since \tilde{U}_i is finitely generated, I implies that $\tilde{U}_i / \tilde{U}_i J_i$ is isomorphic to $\tilde{U}_i / \tilde{U}_i J_i$ if and only if $\tilde{U}_i \cong \tilde{U}_i$. Since U_i is the unique simple submodule of \tilde{U}_i, and since isomorphic modules have isomorphic injective hulls, we set that this occurs if and only if $U_i \cong \tilde{U}_i$, that is, if and only if $i = j$. Thus, $\tilde{U}_1 / \tilde{U}_1 J, \ldots, \tilde{U}_n / \tilde{U}_n J$ is a complete set of n nonisomorphic simple modules. Expressed otherwise, each simple module is an epimorphism of $C = \tilde{U}_1 \oplus \cdots \oplus \tilde{U}_n$. Since C is projective, this implies that C is a generator in M_R. Therefore, there exists an epimorphism $\sum C_i \rightarrow R$ of a direct sum of copies of C onto R. Since R is projective, this epimorphism splits, so R is (isomorphic to) a direct summand of $\sum C_i$. Since R is finitely generated, R is a direct summand of finitely many copies of C. Then injectivity of C implies that \tilde{U} is a generator of R. Since P is finitely generated and projective, the same argument shows that P is also injective in M_R.

4.2. COROLLARY. If R is a cogenerator in M_R, and if $R/\text{rad } R$ is semi-simple, then R is right self-injective.

5. A CHARACTERIZATION OF QUASI-FROBENIUS RINGS

In this section we deduce the characterization of QF (quasi-Frobenius) rings mentioned in the introduction.

If X is a subset of a ring R, set $(X:0) = \{a \in R \mid xa = 0\}$, and $(0:X) = \{a \in R \mid ax = 0\}$. Any right (resp. left) ideal of R of the form $(X:0)$ (resp. $(0:X)$) is a right (resp. left) annulet.

A ring R is QF in case: (1) each right ideal is a right annulet; (2) each left ideal is a left annulet; and (3) R is right (or left) artinian.

Next [23], and Elsénig-Nakayama [9], show the equivalence of the following conditions:

1. R is QF.
2. R is left self-injective and right artinian.
3. For all $x \in R - \text{rad } R$, $\text{rad } (xR) = (xR)$.

4. R is left self-injective and right finitely generated.
5. R is left self-injective and right Noetherian.

6. R is right self-injective and right finitely generated.
7. R is right self-injective and right Noetherian.
5.1. Proposition. The following two conditions on a ring R are equivalent:

(1) Each cyclic module in \mathbb{M}_R is contained in a projective module in \mathbb{M}_R;

(2) Each right ideal of R is the right annihilator of a finite subset of R.

When (1) or (2) holds, then each cyclic module is contained in a finitely generated free module.

Proof. (1) \Rightarrow (2). Let A be a right ideal of R, and imbed the cyclic module R/A in a projective module, hence in a free module $F \in \mathbb{M}_R$. Since R/A is cyclic, we may assume that F has a finite free basis, that is, that $F \cong R^n$ for some n. If we write $1 + A = \langle x_1, \ldots, x_n \rangle \in R^n$, where $x_i \in R$, $i = 1, \ldots, n$, and if $r \in R$, then $r + A = \langle x_1 r, \ldots, x_n r \rangle$. Thus $r \in A$ if and only if $x_i r = 0$, $i = 1, \ldots, n$. Thus $A = \langle x_1, \ldots, x_n \rangle$.

(2) \Rightarrow (1). Any cyclic module has the form R/A for some right ideal A. Now $A = \langle X, 0 \rangle$, for some finite subset $X = \{x_1, \ldots, x_n\}$ of R. Then, the correspondence $r + A \rightarrow (x_1 r, \ldots, x_n r)$, defined for each coset $(r + A) \in R/A$, imbeds R/A into the free module R^n. This also proves the last statement.

The following result is proved similarly.

5.2. Proposition. The following two conditions on a ring R are equivalent:

(1) Each cyclic module in \mathbb{M}_R is contained in a direct product of copies of R;

(2) Each right ideal of R is a right annihilator.

It is fairly well known that a ring R is QF if and only if the class of injective modules in \mathbb{M}_R coincides with the class of projective modules in \mathbb{M}_R. Our characterization of QF rings is

5.3. Theorem. A ring R is QF if and only if each injective right R-module is projective.

Proof. First assume that R is QF, and let M be any injective right R-module. Since R is right artinian, it is right noetherian, so M is a direct sum of indecomposable injective modules. Since a direct sum of projective modules is projective, we are reduced to the case where M itself is indecomposable (and injective). Then M is the injective hull \hat{C} of any nonzero cyclic submodule C. By the first proposition above, C is contained in a finitely generated free module R^n. Since P_R is injective, so is R^n; therefore the imbedding of C into R^n can be extended to an imbedding of $M = \hat{C}$ into R^n. But M, being injective, is a direct summand of R^n, and therefore is projective.
Conversely, if each injective module in \mathbb{M}_R is projective, then each module in \mathbb{M}_R is contained in a free module, in particular, is contained in a direct sum of cyclic modules, so R is right artinian by Theorem 3.1. But, as noted in the introduction to the preceding section, since each $M \in \mathbb{M}_R$ is contained in a direct product, in fact, direct sum, of copies of R, R is a cogenerator in \mathbb{M}_R. Now $R/\rad R$ is semi-simple, so Cor. 4.2 implies that R is right self-injective, so R is QF by the theorem of Ikeda.

The proof has the following consequence:

5.4. Corollary. An artinian ring R is a cogenerator in \mathbb{M}_R if and only if R is QF.

5.5. Theorem. A ring R is QF if and only if each injective right R-module is a direct sum of cyclic modules which are isomorphic to principal indecomposable right ideals of R.

Proof. If R is QF, and M is injective, then M is a direct sum of indecomposable injective modules $(M_i)_{i \in I}$. But each M_i is projective by (5.3), and hence isomorphic to a principal indecomposable right ideal by (2.5). This proves one part. Since a direct sum of principal indecomposable right ideals is projective, the converse follows from (5.3).

We close out this section with a number of more or less obvious corollaries.

5.6. Corollary. A ring R is QF if and only if every right R-module is contained in a free right R-module.

5.7. Corollary. If every (injective) right R-module is contained in a direct sum of right ideals, then R is QF.

For then every injective module is projective.

5.8. Corollary. If R is left and right noetherian, and if R is cogenerator in \mathbb{M}_R, then R is QF.

Proof. If R is right and left noetherian, then every finitely generated submodule of a direct product of copies of R is contained in a free R-module. (Expressed otherwise, every finitely generated torsionless module is contained in a free module (see Bass [3, p. 477, (4.5)]). Hence, by (5.1), every right ideal of R is an annulet, so R is QF.

5.9. Corollary to 5.1. If R is commutative then the following conditions are equivalent:

(1) Every cyclic module is contained in a projective R-module;
(2) Each ideal is the annihilator of a finite subset of R;
(3) R is QF.
Proof. (1) and (2) are equivalent for any ring R, by (5.1). If R is QF, then every module can be embedded in a projective module, so (3) ⇒ (1).

Conversely, (2) implies every ideal is an annulet, so it remains to show that R is artinian, or noetherian. Let I be any ideal, and let $Q = (I : 0)$. Since I is an annulet, $I = (Q : 0)$. By (2) there exist finitely many $x_1, ..., x_n \in R$ such that $\sum_{i=1}^{n} (x_i : 0) = Q$. Then $K = \sum_{i=1}^{n} x_i R$ is an ideal of R and $(K : 0) = Q$. Since K is an annulet, necessarily

$$I = (Q : 0) = K = \sum_{i=1}^{n} x_i R.$$

Since every ideal I of R is therefore finitely generated, R is noetherian, whence QF.

The same proof establishes

5.10. Corollary. The following conditions on a ring R are equivalent:

1. Every cyclic right, and every cyclic left, R-module is contained in a projective R-module;
2. Every right ideal, and every left ideal, is the annihilator of a finite subset of R;
3. R is QF.

5.11. Corollary. If R is a ring, and if the injective hull of every cyclic right module, and the injective hull of every cyclic left module, is projective then R is QF.

There exists a ring R with precisely three right ideals $R \supset \text{rad } R \supset 0$ which is not left artinian. For this ring, R, O, and

$$\text{rad } R \cong R/\text{rad } R$$

are the only cyclic right R-modules. Thus, R is an example of a ring which is not QF, yet every cyclic right R-module is contained in a free R-module, in fact, contained in R.

6. Completely Decomposable Modules

Let $Q = \sum_{i \in I} Q_i$ be a direct sum of indecomposable injective modules $(Q_i : i \in I)$. Such a module Q will be called completely decomposable (c.d.). If I is finite then Q will be called finitely c.d. (A theorem of Azumaya [1, p. 119] states that each indecomposable injective submodule of the module Q above is isomorphic to some $(Q_i :)$.)
In [26] Matlis asked: Is each direct summand S of the module Q (above), also c.d.? An affirmative answer is given by the Azumaya-Krell-Schmidt-Remark theorem when the index set I is finite. Also, if R is right hereditary, then Q is injective by Theorem 0.1; S is then injective, so S is c.d. by Matlis' and Papp's Theorem 0.3. Below we give affirmative answers in some other special cases. We begin with a lemma.

6.1. Lemma. Let Q be a direct sum of indecomposable injective modules \(\{Q_i \mid i \in I\} \), and let S be a direct summand of Q, $Q = S \oplus T$. Then (1) If M is a finitely generated submodule of S, then S contains an injective hull M of M, and M is finitely c.d. (2) If S_i is any direct summand of S, $S = S_i \oplus N$, and if $y \in S_i$, then $y \in S_i \oplus T_i$, where T_i is a finitely c.d. summand of N.

Proof. (1) Let x_1, \ldots, x_n generate M. Each x_i is contained in the sum P of finitely many of the Q_i's, whence $M \subseteq P$. Since P is injective, it contains an injective hull P_i of M, into S along T fixes M, so is a monomorphism since M is essential in P_i. The image of P_i is clearly an injective hull M of M. By the case cited above when the index set is finite, P_i, being a summand of P, is finitely c.d. Thus so is M, being isomorphic to P_i.

(2) Write $y = x + t$, with $x \in S_i$, $t \in N$. Applying (1) to the direct summand N of Q, and the module $1t \subseteq N$, we obtain a direct summand T_i of N containing $1t$ which is finitely c.d., and $S_i \oplus T_i$ contains y as required.

Note that (1) implies that the injective hull of any finitely generated submodule of a c.d. module is finitely c.d.

6.2. Proposition. Let S be a direct sum of the c.d. module Q.
(1) If S is countably generated, then S is c.d.; (2) If S is the injective hull of a finitely generated submodule, then S is finitely c.d.; (3) If S contains a finitely generated submodule M, such that S/M is countably generated, then S is c.d.

Proof. (1) Let x_1, x_2, \ldots, x_n be a countable generating set of S. By the lemma, S contains a chain $S_n \subseteq \cdots \subseteq S_1 \subseteq \cdots$ of direct summands such that $x_1 \ldots, x_n \in S_i$ for all i, and such that each S_i is finitely c.d. But $S = \bigcup_{n=1}^{\infty} S_n$. Setting $S_0 = 0$, $S \cong \bigoplus_{n=1}^{\infty} S_n/S_n$ is clearly a direct sum of finitely c.d. modules, that is, S is c.d.

(2) follows immediately from the lemma, and (3) is then a consequence of (1) and (2).

6.3. Corollary. Let Q be a direct sum of (any number of) countably generated indecomposable injective modules. Then any direct sum S of Q is c.d.
Proof. By Kaplansky’s theorem, stated in Section 3, S itself is a direct sum of countably generated modules. Hence, it suffices to prove the corollary for the case S is countably generated. But this case follows from (1) of the last proposition.

6.4. Theorem. Let Q be an injective right R-module which is completely decomposable:

\[Q = \bigoplus_{i \in I} Q_i, \]

where \(\{Q_i : i \in I\} \) is a set of indecomposable (and injective) modules.

(1) If S is any submodule which is a direct sum \(\bigoplus_{j \in J} S_j \) of indecomposable injective submodules \(\{S_j : j \in J\} \), then S is injective, and \(|J| \leq |I| \).

(2) Any direct summand \(P \) of Q is completely decomposable.

Proof. For any subset A of I, let \(Q_A = \bigoplus_{a \in A} Q_a \), and let \(\pi_A \) be the projection of Q on \(Q_A \) having kernel \(Q_{-A} \). A homogeneous component of Q is defined to be a submodule \(Q_a \), where each \(A \) is the set of all those \(b \in I \) for which \(Q_b \) is isomorphic to some fixed \(Q_a \). Then \(Q = \bigoplus \bigoplus Q_a \), and if S is the submodule in the statement of (1), then also S is a direct sum of its homogeneous components: \(S = \bigoplus Q_a \).

(i) If \(h \in K \), then \(S_h \), being injective, is a direct summand of Q, and being indecomposable, is isomorphic to \(Q_a \) for some \(a \in I \). We first show:

(i) \(S_a \) is isomorphic to a submodule of \(Q_a \), the homogeneous component of Q determined by a. Suppose for the moment that \(S_a \cap \ker \pi_a \neq 0 \). If y is a nonzero element in this intersection, then the submodule T it generates is contained in \(S_{a'} \), where \(a' \) is a finite subset of K, and also \(T \subseteq Q_b \), where B is a finite subset of \(I - A \). (Recall that \(\ker \pi_a = Q_{-a} \)). Since \(S_{a'} \) (resp. \(Q_b \)) is injective, it contains an injective hull E (resp. \(F \)) of T. Since \(S_{a'} \) is finitely completely decomposable and is isomorphic, so is E. Since E and F are isomorphic, this means that E contains submodule G which is isomorphic to \(S_k \), hence to \(Q_k \), which is also isomorphic to \(Q_{a'} \) for some \(b \in I - A \). But, by the definition of \(A \), this is impossible, since \(A = \{ a \in I | Q_a \cong Q_k \} \). This contradiction shows that \(\ker \pi_a \cap S_a = 0 \), so \(\pi_a \) maps \(S_a \) monomorphically into \(Q_a \). Hereafter \(\pi_a \) denotes a fixed monomorphism \(S_a \to Q_a \).

We next show:

(ii) \(S_a \) is injective. If \(|A| \) is infinite, then \(Q_a \) is countably \(\Sigma \)-injective, hence by (0.2), \(Q_a \) is \(\Sigma \)-injective. This implies that \(S_a \) is injective. Next suppose \(|A| = n \) is finite. If \(|E| > n \), then \(S_a \) contains as a direct summand a submodule T which is a direct sum of \(n + 1 \) copies of \(Q_a \). Furthermore, T is then injective, so \(\pi_a(T) \) is a direct summand of \(Q_a \), which is a direct sum of \(n + 1 \) copies of \(Q_a \), violating the Krull-Schmidt-
Remark theorem. Therefore $|K| < \infty$, so S_k is injective in this case too. This proves (ii), and also (ii) below.

(iii) If W is a submodule of Q, and if W is a direct sum of isomorphic indecomposable injective submodules, then W is injective. (iii) is the homogeneous case of (1), that is, the case where $W = S = S_k$.

In order to simplify notation, let $X = Q_k$ and $U = \varphi_k(S_k) = \varphi_q$. Since $U \approx S_k$, U is injective, so $X = U \oplus V$ for some submodule V. By Zorn's lemma, there exists a maximal independent set P of indecomposable injective submodules of V. The sum W of the submodules in P is direct. Since $X = Q_k$ is homogeneous, so is W, and W is therefore injective by (ii). Since W is therefore a summand of V, in order to avoid contradicting maximality of W, necessarily $W = V$. Together the completely decomposable modules U and V yield a decomposition, of $X = U \oplus V$ into a direct sum of indecomposable modules, and the unique decomposition theorem [2] then implies that the number of indecomposable summands of $X = \varphi_k(S_k)$ is less than $|A|$, that is, $|K| \leq |A|$. Now, S_k is isomorphic to a direct summand of Q_k, and therefore $S = \sum S_k$ is isomorphic to a direct summand of Q. This proves that S is injective. Furthermore, since J (resp. P) is the disjoint union of the various K (resp. A), then $|K| \leq |A|$ implies that $|j| \leq |1|$. This proves (1), (2) is proved in the same way above we proved that V is completely decomposable.

REFERENCES