Direct Summands of Direct Products of Abelian Groups

By Robert A. Walker in University Park (New Mexico)

Baueslai and Blackburn have investigated direct summands of direct products (direct product = unrestricted direct sum) of Abelian groups in [1]. One question left open is whether or not the direct product of cyclic groups of orders p, p^2, p^3, \ldots has a non-zero torsion-free direct summand. We will show that it does have such a summand, and indeed a maximum one. This will be an easy corollary of our main Theorem, which settles a more general question. Furthermore, generalizations of Baueslai and Blackburn's Theorem 2 and Theorem 4 will be immediate consequences of the methods we use.

Our methods are homological. More precisely, we will use some of Harrison's results in [3] which were proved homologically. For convenience, let us summarize the results of [3] that will be applied here. The word group will always mean Abelian group. The additive group of a ring has the word group of integer will be denoted Q and Z respectively. If G is a group, G_i will denote the torsion subgroup of G.

A reduced* group G is cotorsion if $\text{Ext}(H, G) = 0$ for all torsion free groups H. A cotorsion group is adjusted if it has no non-zero torsion free direct summand. The following principal results we will note here and will use without further explicit reference to them.

(A) Every cotorsion group G is uniquely the direct sum of a torsion free cotorsion group and an adjusted cotorsion group. Moreover, a cotorsion group G is adjusted if and only if G/\mathbb{G} is divisible.

(B) There is a one-to-one correspondence between all divisible torsion groups and all torsion free cotorsion groups. If D is a divisible torsion group, the correspondence is $D \leftrightarrow \text{Hom}(\mathbb{Q}/\mathbb{Z}, D)$. If G is torsion free cotorsion, the inverse of this correspondence is $G \leftrightarrow (\mathbb{Q}/\mathbb{Z}) \otimes G$.

(C) There is a one-to-one correspondence between all reduced torsion groups and all adjusted cotorsion groups. If T is a reduced torsion group, the correspondence is $T \leftrightarrow \text{Ext}(\mathbb{Q}/\mathbb{Z}, T)$. If G is an adjusted cotorsion group, then the inverse of this correspondence is $G \leftrightarrow G_i$. (Result (C) will not be used later and is noted here only as an analogy to result (B).)

(D) A torsion group is cotorsion if and only if it is of bounded order. (Harrison's remark on page 371 of [3] is incorrect. See [2], page 187.)

*) G is reduced if it has no non-trivial divisible subgroup.
Now we are ready to state and prove our main theorem, which is an almost immediate consequence of Harrison's result in [3]. However, the consequences of this theorem are worthy of note.

Theorem. Let \(\{G_i\}_{i=1}^n \) be a set of groups, where each \(G_i \) is torsion. Then \(\prod_{i=1}^n G_i = G \) has a maximum torsion free direct summand \(H \), and \(H = 0 \) if and only if \(G/G_i \) is divisible. Furthermore, any non-zero torsion free direct summand of \(G \) is uncountable.

Proof. Let \(A \) be any torsion free group. Since each \(G_i \) is torsion, \(0 = \text{Ext}(A, G_i) = \prod_{i=1}^n \text{Ext}(A, G_i) = \text{Ext}(A, \prod_{i=1}^n G_i) \), so that \(G \) is torsion. If \(G = H \oplus K \), then \(0 = \text{Ext}(A, G) = \text{Ext}(A, H \oplus K) \cong \text{Ext}(A, H) \oplus \text{Ext}(A, K) \), and it follows that any direct summand of \(G \) is also a torsion. Let \(G = H \oplus K \), where \(H \) is torsion torsion free and \(K \) is adjusted torsion. Suppose \(H' \) is any torsion free direct summand of \(G \), and let \(G = H' \oplus K' \). Write \(K' = L \oplus M \), where \(L \) is torsion free and \(M \) is adjusted. Then \(G = (H' \oplus L) \oplus M \), and by uniqueness it follows that \(H = H' \oplus L \). Hence \(H \) is the maximum torsion free direct summand of \(G \). Suppose \(H \neq 0 \). Proving \(\phi \) onto \(H \) is a homomorphism of \(G \) onto \(H \) whose kernel contains \(G_i \). Hence \(H \) is a homomorphic image of \(G/G_i \). But \(H \) is nonzero reduced. Therefore \(G/G_i \) is not divisible. Conversely, suppose \(G/G_i \) is not divisible. Then \(G \) is not adjusted, and hence \(H = 0 \). Now let \(H' \) be any non-zero torsion free direct summand of \(G \). Since \(H' \) is torsion, \(H' \cong \text{Hom}(G/E, D) \), where \(D \) is some nonzero torsion divisible group. But \(\text{Hom}(Z(p^\infty), Z(p^\infty)) \) is the \(p \)-adic integers, which are uncountable. Hence \(H' \) is uncountable.

Now let us see what this theorem says in some special cases. First, let \(G_i \) be the cyclic group of order \(p^i \) for some fixed prime \(p \). Each \(G_i \) is certainly torsion. Let \(G = \prod_{i=1}^n G_i \) and let \(g \) be a generator of \(G_i \). It is easy to see that the element \((g_1, g_2, g_3, \ldots) \) is not divisible by \(p \) modulo \(G_i \), so that \(G/G_i \) is not divisible. By our theorem, \(G \) has a maximum torsion free direct summand \(H \), \(H = 0 \), and any torsion free direct summand of \(G \) is uncountable.

More generally, let \(\{G_i\}_{i=1}^n \) be a set of groups such that each \(G_i \) is bounded order. Let \(n_1 \) be the exponent of \(G_1 \). We know that \(G \) will have a non-zero torsion free direct summand if and only if \(G/G_1 \) is not divisible, but what does this mean in terms of the \(n_i \)? The situation is this. The group \(G/G_i \) is not divisible if and only if there exists a prime \(p \) and exponents \(n_1, n_2, \ldots \) such that \(p \) divides \(n_i \). The proof that the existence of such a prime \(p \) implies \(G/G_i \) is not divisible is analogous to the one above that \(\prod_{i=1}^n G_i \) is not divisible modulo its torsion subgroup. Suppose that no such prime exists. Let \((g_i) \) be an element of \(G_i \), and let \(p \) be a prime. We wish to find an element \((l_i) \in G \) and an element \((a_i) \in G \) such that \((t_i) + p(b_i) = (g_i) \). Let \(a(x) \) denote the order of an element \(x \). Let \(a(x) = p^m a \), where \(m \) is a fixed integer such that \(m \geq 1 \). If \(m = 0 \), then \(a(x) = p^m a \), and it is well known that \(p^m a \) is divisible by \(p \) in \(G_1 \). In this case let \(a_i = 0 \) and let \(a_i \) be any element in \(G_i \) such that \(p b_i = a_i \). If \(m_1 = 1 \), let \(a_i \) and \(b_i \) be integers such that \(a_i = (a_i, p^m a) + (b_i, q) \). Now let \(a_i = (a_i, p^m a) + (b_i, q) \).
Our hypothesis implies immediately that \(\langle \xi \rangle \in G_1 \), and it is obvious that \(\langle \xi \rangle + p\langle \xi \rangle = \langle \xi \rangle \). Hence \(\langle \xi \rangle \) is divisible modulo \(G_1 \) by any prime \(p \), and thus by any integer. Therefore \(G/G_1 \) is divisible.

In particular, we see that if \(\{G_a\}_{a \in \mathcal{A}} \) is a set of cotorsion groups such that each \(G_a \) is of finite exponent \(n_a \), and such that \((n_{a_1}, n_{a_2}) = 1 \) if \(a_1 \neq a_2 \), then \(G \) has no non-zero torsion free direct summands.

We have seen that a direct summand of a cotorsion group is cotorsion. Since a torsion group is cotorsion if and only if it is of bounded order, we get that a torsion direct summand of any direct product of cotorsion groups is of bounded order, and in particular, Theorem 2 of [1].

References

Eingegangen am 18.3.1960

17*