MATH 541- Part II - summary

Material covered before the second exam. Write examples for each of the concepts defined below.

I. ALGEBRAIC TOPOLOGY

1. Covering spaces. \(p: E \rightarrow X \) is a covering space of \(X \) if every \(x \in X \) has an open neighborhood \(U \) such that \(p^{-1}(U) \) is a disjoint union of open sets \(S_i \) in \(E \) each of which is mapped homeomorphically onto \(U \) by \(p \). Such \(U \) are called evenly covered.

2. Application. We proved the path lifting lemma and the covering homotopy lemma. As an consequence we have that: \(p_*: \pi_1(E) \rightarrow \pi_1(X) \) is a monomorphism.

3. Covering transformations. For any covering space \(p: E \rightarrow X \), the group of covering transformations is the group of all homeomorphisms \(\phi \) of \(E \) which preserve the fibres, that is \(p \circ \phi = p \).

4. Theorem. Given a covering space \(p: (E, e_0) \rightarrow (X, x_0) \) with group of covering transformations \(G \). If \(E \) is simply connected and locally pathwise connected, then \(g \) is canonically isomorphic to \(\pi_1(X) \).

5. Example. \(\pi_1(\mathbb{RP}^n) = \mathbb{Z}_2 \).

II. HIGHER HOMOTOPY GROUPS

6. Higher homotopy. Consider the space \(X^I \) with the compact-open topology, and denote by \(\Omega_{x_o} \) the subspace of \(X^I \) consisting of all loops at \(x_0 \) (with base point the constant loop at \(x_o \)). We define for \(n \geq 2 \)

\[
\pi_n(X, x_0) = \pi_{n-1}(\Omega_{x_0}).
\]

7. Alternative definition. We showed that \(\pi_n(X, x_0) \) can be interpreted as homotopy classes of maps \((S^n, s_0) \rightarrow (X, x_0) \).

8. Homotopy Sequence of a Fibration. To a fibration \(F \rightarrow E \rightarrow X \) there is associated a long exact sequence

\[\rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(X) \rightarrow \pi_{n-1}(F) \rightarrow \cdots. \]
9. **Important Example.** Using the Hopf Fibration

\[S^1 \to S^3 \to S^2 \]

it follows that

\[\pi_3(S^2) = \mathbb{Z}. \]

II. Differential Topology

Review of Calculus:

10. **Inverse Function Theorem.** Let \(U \subset \mathbb{R}^n \) be open and \(f: U \to \mathbb{R}^n \) a \(C^r \) map \(r \geq 1 \). If \(Df_p \) is invertible, then \(f \) is a \(C^r \) local diffeomorphism at \(p \).

11. **Local Form of Submersions.** Let \(U \subset \mathbb{R}^m \) be open and \(f: U \to \mathbb{R}^n \) a \(C^r \) map \(r \geq 1 \). Let \(p \in U, f(p) = 0 \), and suppose that \(Df_p \) is surjective. Then there exists a local diffeomorphism \(\phi \) of \(\mathbb{R}^m \) at 0 such that \(\phi(0) = p \) and

\[f \phi(x_1, \cdots, x_m) = (x_1, \cdots, x_n). \]

12. **Local Form of Immersions.** Let \(U \subset \mathbb{R}^n \) be open and \(f: U \to \mathbb{R}^n \) a \(C^r \) map \(r \geq 1 \). Let \(q \in \mathbb{R}^n \), such that \(0 \in f^{-1}(q) \), and suppose that \(Df_0 \) is injective. Then there exists a local diffeomorphism \(\psi \) of \(\mathbb{R}^n \) at \(q \) such that \(\psi(0) = 0 \), and

\[\psi f(x_1, \cdots, x_m) = (x_1, \cdots, x_m, 0 \cdots, 0). \]

Important definitions.

13. **Regular values.** Let \(f: M \to N \) be a \(C^1 \) map. We call \(x \in M \) a regular point if \(f \) is submersive at \(x \), otherwise we call \(x \) a critical point. A point \(y \in N \) is called a regular value if for all \(x \in f^{-1}(y), x \) is a regular point.

14. **Regular Value Theorem.** Let \(f: M \to N \) be a \(C^r \) map, \(r \geq 1 \). If \(y \in f(M) \) is a regular value, then \(Y = f^{-1}(y) \) is a \(C^r \) submanifold of \(M \). Moreover, \(\text{dim}(Y) = \text{dim}(M) - \text{dim}(N) \).

15. Some examples:

\(S^n \) is a \(C^\infty \) submanifold of \(\mathbb{R}^{n+1} \)

\(SL(n) \) if a \(C^\infty \) submanifold of \(GL(n) \).
III. Classification of Surfaces

We used the following two consequences of the Seifert–Van Kampen theorem:

16. Theorem. Suppose $X = U \cup V$ where U and V are open in X and $U \cap V$ is pathwise connected. If $\pi_1(U \cap V) = 0$, then $\pi_1(X) = \pi_1(U) \ast \pi_1(V)$.

17. Theorem. Suppose $X = U \cup V$ where U and V are open in X and $U \cap V$ is pathwise connected. If $\pi_1(V) = 0$, then $\pi_1(X) = \pi_1(U)/[\pi_1(U \cap V)]$, where $[\pi_1(U \cap V)]$ denotes the smallest normal subgroup of $\pi_1(U)$ containing $i_*(\pi_1(U \cap V))$.

18. Classification of Surfaces. Any connected compact surface is either homeomorphic to a sphere, or to a connected sum of tori, or to a connected sum of projective planes.